
Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem A. Archeologists
Time limit: 3 seconds

Memory limit: 1024 megabytes

Your treasure hunter team has just discovered a giant archeological site, full of precious metals and
valuable antiquities. The site is composed of n digging spots on a line.

The initial plans suggest that each of the n digging spots has a net profit associated with it. The i-th
spot’s associated profit is pi. More specifically, this means that your team would gain pi dollars for each
meter dug in the i-th spot. Note that pi may also be negative, which means that the running cost of the
excavating machinery surpasses the actual gain from digging in the i-th spot.

Naturally, you would want to dig as much as possible in the most profitable spots. However, in order
not to cause landslides, you are not allowed to have slopes that are too steep. More precisely, for any
two adjacent spots, the difference between the digging depth at these spots cannot differ by more than 1
meter. In particular, spots 1 and n can be dug only at most 1 meter deep.

What is the largest net profit that you can obtain, under these conditions?

For instance, a valid digging plan that turns out to be optimal in the case of the first example input is
illustrated below. The net profit of such plan is 8.

Input
The first line of the input will contain a positive integer n (1 ≤ n ≤ 250 000).

The second line of the input will contain n integers pi (−106 ≤ pi ≤ 106), separated by spaces.

Output
Output exactly one integer, the largest profit that you can obtain.

Examples
standard input standard output

5
1 3 -4 2 1

8

4
1 1 -2 3

5

5
-1 -3 0 -5 -4

0

1

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem B. Reverse Game
Time limit: 1 second

Memory limit: 256 megabytes

Alice and Bob are playing a turn-based game. The rules of the game are as follows:

1. At the beginning of the game some binary string s is chosen.

2. On his turn player has to choose some substring t of s, equal to one of 10, 110, 100, 1010. Then the
player has to reverse t. For example, if s = 010101, the player can select substring t = 1010 and
reverse it, obtaining s = 001011

3. The player who can’t make a move (who can’t choose an appropriate substring t) loses.

4. The players cannot skip a turn.

Which player has the winning strategy, if Alice moves first?

A string a is a substring of a string b if a can be obtained from b by deletion of several (possibly, zero or
all) characters from the beginning and several (possibly, zero or all) characters from the end.

Input
The only line of the input contains a binary string s (1 ≤ |s| ≤ 106) — the string with which Alice and
Bob play.

Output
If Alice wins, output Alice. Otherwise, output Bob.

Examples
standard input standard output

010 Alice

1111 Bob

1010 Bob

1010001011001 Alice

Note
In the first sample, Alice can choose substring 10 of 010 and reverse it, obtaining string 001. Bob can’t
make any move with this string, and loses.

In the second sample, Alice can’t make a single move and loses.

2

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem C. 3-colorings
Time limit: 2 seconds

Memory limit: 256 megabytes

This is an output-only problem. Note that you still have to send code which prints the output, not
a text file.

A valid 3-coloring of a graph is an assignment of colors (numbers) from the set {1, 2, 3} to each of the n
vertices such that for any edge (a, b) of the graph, vertices a and b have a different color. There are at
most 3n such colorings for a graph with n vertices.

You work in a company, aiming to become a specialist in creating graphs with a given number of 3-
colorings. One day, you get to know that in the evening you will receive an order to produce a graph with
exactly 6k 3-colorings. You don’t know the exact value of k, only that 1 ≤ k ≤ 500.

You don’t want to wait for the specific value of k to start creating the graph. Therefore, you build a graph
with at most 19 vertices beforehand. Then, after learning that particular k, you are allowed to add at
most 17 edges to the graph, to obtain the required graph with exactly 6k 3-colorings.

Can you do it?

Input
There is no input for this problem.

Output

First, output n and m (1 ≤ n ≤ 19, 1 ≤ m ≤ n(n−1)
2) — the number of vertices and edges of the initial

graph (the one built beforehand). Then, output m lines of form (u, v) — the edges of the graph.

Next, for every k from 1 to 500 do the following:

Output e — the number of edges you will add for this particular k (1 ≤ e ≤ 17). Then, output e lines of
the form (u, v) — the edges you will add to your graph.

There can’t be self-loops, and for every k, all m+e edges you use have to be pairwise distinct. The number
of 3-colorings of the graph for a particular k has to be exactly 6k.

Example
standard input standard output

- 3 2
1 2
2 3
1
1 3
0

Note
The sample output is given as an example. It contains the output for k = 1, 2.

3

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem D. Disk Sort
Time limit: 1 second

Memory limit: 256 megabytes

You are given n+ 1 rods and 3n disks. Initially, each of the first n rods contains exactly 3 disks. Each of
the disks has one of n colors (identified by numbers from 1 to n). Moreover, there are exactly 3 disks of
each of the n colors. The n+ 1-th rod is empty.

At each step we can select two rods a and b (a 6= b) such that a has at least 1 disk and b has at most 2
disks, and move the topmost disk from rod a to the top of rod b. Note that no rod is allowed to contain
more than 3 disks at any time.

Your goal is to sort the disks. More specifically, you have to do a number of operations (potentially 0), so
that, at the end, each of the first n rods contains exactly 3 disks of the same color, and the n + 1-th
rod is empty.

Find out a solution to sort the disks in at most 6n operations. It can be proven that, under this condition,
a solution always exists. If there are multiple solutions, any one is accepted.

Input
The first line of the input contains a positive integer n (1 ≤ n ≤ 1 000). The next 3 lines of the input
contain n positive integers ci,j each (1 ≤ i ≤ 3, 1 ≤ j ≤ n, 1 ≤ ci,j ≤ n), the color each of the disks
initially placed on the rods. The first of the 3 lines indicates the upper row, the second line indicates the
middle row, and the third line indicates the lower row.

Output
The first line of the output must contain a non-negative integer k (0 ≤ k ≤ 6n), the number of operations.
Each of the following k lines should contain two distinct numbers ai, bi (1 ≤ ai, bi ≤ n + 1, for all
1 ≤ i ≤ k), representing the i-th operation (as described in the statement).

Examples
standard input standard output

4
2 3 1 4
2 1 1 4
2 3 3 4

8
3 5
3 5
2 3
2 5
2 3
5 2
5 2
5 2

2
1 2
1 2
1 2

0

4

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem E. Divisible by 3
Time limit: 2 seconds

Memory limit: 256 megabytes

For an array [b1, b2, . . . , bm] of integers, let’s define its weight as the sum of pairwise products of its
elements, namely as the sum of bibj over 1 ≤ i < j ≤ m.

You are given an array of n integers [a1, a2, . . . , an], and are asked to find the number of pairs of integers
(l, r) with 1 ≤ l ≤ r ≤ n, for which the weight of the subarray [al, al+1, . . . , ar] is divisible by 3.

Input
The first line of the input contains a single integer n (1 ≤ n ≤ 5 · 105) — the length of the array.

The second line contains n integers a1, a2, . . . , an (0 ≤ ai ≤ 109) — the elements of the array.

Output
Output a single integer — the number of pairs of integers (l, r) with 1 ≤ l ≤ r ≤ n, for which the weight
of the corresponding subarray is divisible by 3.

Examples
standard input standard output

3
5 23 2021

4

5
0 0 1 3 3

15

10
0 1 2 3 4 5 6 7 8 9

20

Note
In the first sample, the weights of exactly 4 subarrays are divisible by 3:

• weight([5]) = weight([23]) = weight([2021]) = 0

• weight([5, 23, 2021]) = 56703 = 3 · 41 · 461

5

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem F. Fence Job
Time limit: 1 second

Memory limit: 256 megabytes

Fred the Farmer wants to redesign the fence of his house. Fred’s fence is composed of n vertical wooden
planks of various heights. The i-th plank’s height is hi (1 ≤ hi ≤ n). Initially, all heights are distinct.

In order to redesign the fence, Fred will choose some contiguous segment [l...r] of planks and “level”
them, by cutting them in order to make all heights equal to the minimum height on that segment. More
specifically, the new heights of the segment become h′i = min{hl, hl+1, ..., hr} for all l ≤ i ≤ r.

How many different designs can Fred obtain by applying this procedure several (possibly 0) times? Since
the answer may be huge, you are required to output it modulo 109 + 7.

Two designs A and B are different if there is some plank that has a different height in A than in B.

Input
The first line of the input contains n (1 ≤ n ≤ 3 000), the number of planks of Fred’s fence.

The second line contains n distinct integers hi (1 ≤ hi ≤ n, 1 ≤ i ≤ n), the heights of each of the planks.

Output
Output a single integer, the number of different possible fence designs that can be obtained, modulo
109 + 7.

Examples
standard input standard output

3
1 3 2

4

5
1 2 3 4 5

42

7
1 4 2 5 3 6 7

124

6

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem G. Simple Hull
Time limit: 5 seconds

Memory limit: 1024 megabytes

Gary has been trying to generate simple orthogonal polygons for his geometry homework, but his algorithm
seems to be having some issues. After some good hours of debugging, he finally realized what is the
problem: apparently, the polygons that he was generating may contain self-intersections, which was not
at all what he intended!

More specifically, the “polygons” that Gary has generated are represented by a list of n points pi = (xi, yi),
forming a closed polygonal chain. The polygonal chain may contain self-intersections. The segments formed
by every two consecutive points (xi, yi) and (xj , yj) in the chain are either vertical or horizontal.

The polygonal chains for the example test cases are illustrated below (not to scale):

You have decided to help Gary fix this issue, by computing a simple (not self-intersecting) polygon with
vertical and horizontal segments that fully contains the chain, and its area is as small as possible. What
is the area of such a polygon?

Formally, you have to compute the infimum of the areas of all simple orthogonal polygons that contain
all the segments [pi, pj], for every two adjacent points pi and pj .

Input
The first line of the input will contain a positive integer n (4 ≤ n ≤ 100 000). The following n lines will
contain the points (xi, yi) in order (1 ≤ xi, yi ≤ 106). No two consecutive points coincide, and there are
no two consecutive vertical segments or two consecutive horizontal segments.

Output
Output a single non-negative integer, the infimum of the areas of all simple polygons that enclose the
closed polygonal chain. It can be proven that the answer is always integer.

7

Southeastern European Regional Programming Contest 2020
May 23, 2021

Examples
standard input standard output

6
1 1
6 1
6 11
11 11
11 6
1 6

50

8
2 4
2 1
4 1
4 3
1 3
1 2
3 2
3 4

6

10
1 1
1 5
4 5
4 3
2 3
2 4
1 4
1 2
4 2
4 1

8

Note
In examples 1 and 3, there are no simple polygons with areas exactly equal to 50 and 8, respecively;
however, there exist simple polygons with areas arbitrarily close to these values.

8

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem H. AND = OR
Time limit: 3 seconds

Memory limit: 1024 megabytes

Let’s call an array of integers [b1, b2, . . . , bm] good, if we can partition all of its elements into 2 non-
empty groups, such that the bitwise AND of the elements in the first group is equal to the bitwise OR of
the elements in the second group. For example, the array [1, 7, 3, 11] is good, as we can partition it into
[1, 3] and [7, 11], where 1 OR 3 = 3, and 7 AND 11 = 3.

You are given an array [a1, a2, . . . , an], and have to answer q queries of form: is subarray [al, al+1, . . . , ar]
good?

Input
The first line of the input contains two integer n, q (1 ≤ n ≤ 105, 1 ≤ q ≤ 105) — the length of the array
and the number of the associated queries.

The second line of the input contains n integers a1, a2, . . . , an (0 ≤ ai ≤ 230 − 1) — the elements of the
array.

The i-th of the next q lines contains 2 integers li, ri (1 ≤ li ≤ ri ≤ n) — describing the i-th query.

Output
For each query, output YES, if the correspondent subarray is good, and NO, if it’s not.

Example
standard input standard output

5 15
0 1 1 3 2
1 1
1 2
1 3
1 4
1 5
2 2
2 3
2 4
2 5
3 3
3 4
3 5
4 4
4 5
5 5

NO
NO
YES
YES
YES
NO
YES
YES
YES
NO
NO
YES
NO
NO
NO

9

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem I. Modulo Permutations
Time limit: 1 second

Memory limit: 256 megabytes

Given a natural number n, count the number of permutations (p1, p2, . . . , pn) of the numbers from 1 to
n, such that for each i (1 ≤ i ≤ n), the following property holds: pi mod pi+1 ≤ 2, where pn+1 = p1.

As this number can be very big, output it modulo 109 + 7.

Input
The only line of the input contains the integer n (1 ≤ n ≤ 106).

Output
Output a single integer — the number of the permutations satisfying the condition from the statement,
modulo 109 + 7.

Examples
standard input standard output

1 1

2 2

3 6

4 16

5 40

1000000 581177467

Note
For example, for n = 4 you should count the permutation [4, 2, 3, 1], as 4 mod 2 = 0 ≤ 2, 2 mod 3 = 2 ≤ 2,
3 mod 1 = 0 ≤ 2, 1 mod 4 = 1 ≤ 2. However, you shouldn’t count the permutation [3, 4, 1, 2], as
3 mod 4 = 3 > 2 which violates the condition from the statement.

10

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem J. One Piece
Time limit: 3 seconds

Memory limit: 256 megabytes

The Goa Kingdom is a network of n islands (identified by numbers from 1 to n), connected by n − 1
bidirectional bridges. The network is structured as a tree. Some islands contain valuable treasures, and
Luffy is on a quest to find the treasures from all islands.

In order to ease the treasure hunting, he bought a detector from a local merchant. The detector should
have shown the distance from each island to the closest treasure (in number of bridges); however, it seems
to be horribly broken, and shows the distance from each island to the farthest treasure instead!

Nonetheless, he kept the distances that his broken detector showed for each of the islands, hoping that
maybe not everything is lost. He now wonders which islands have a higher chance of containing a treasure.

Your task is to help Luffy by arranging the n islands in order, from highest to lowest probability of
containing a treasure, given that he now knows the distances shown by the detector for each of the n
islands. Initially, you can assume that each of the islands independently had a 50% chance of containing a
treasure; in other words, every subset of islands was equally likely to be the subset of the treasure islands.

Input
The first line of the input contains n (1 ≤ n ≤ 250 000), the number of islands. The following n − 1
lines describe the bridges. Each bridge connects two distinct islands. Finally, the last line contains n
non-negative integers, the distances (in number of bridges) shown on Luffy’s detector for each of the
islands.

It is guaranteed that there is at least one non-empty subset that is consistent with the input data.

Output
Output a permutation of size n, the order of the islands from highest to lowest probability of containing
a treasure. If two islands have the same probability of containing a treasure, output them in increasing
order of their ids.

Examples
standard input standard output

5
1 2
1 3
2 4
2 5
2 2 3 3 3

3 4 5 1 2

4
2 1
3 2
3 4
1 0 1 2

2 1 3 4

Note
In the first example, island 3 must contain a treasure, as it is the only one at distance 2 from island 2.
Islands 4 and 5 have probability 2/3 each, while islands 1 and 2 have probability 1/2.

In the second example, the only possible scenario is that island 2 is the only one containing a treasure.

11

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem K. Codenames
Time limit: 6 seconds

Memory limit: 1024 megabytes

The rules of this game may differ slightly from the official game.

Karen and her friends are competing in a high-stakes board game championship, playing the popular
game Codenames. Codenames is a game with two opposing teams: the red team and the blue team. Karen
is a member of the red team.

The game is played on a board of size 5 × 5 where each of the 25 cells is (secretly) assigned one of four
kinds. There is a fixed number of cells of each kind on the board:

• 9 red cells (r);

• 8 blue cells (b);

• 7 neutral cells (n);

• 1 assassin cell (x).

The true kinds of the cells are known only to one player of each team (called the “spymaster”). The other
players initially see only a 5×5 grid full of covered cells. The cells will get revealed as the game progresses.
Each covered cell contains the name of an object (which turns out to be irrelevant to this problem).

Luckily, Karen is the spymaster of her team, so she knows the true configuration of the board. Her
responsibility is to help her teammates discover the red cells, while keeping them away from all the other
cells (especially the assassin cell). The way she can do that is by announcing a hint consisting of:

• a valid word w (from a dictionary of n words);

• a positive number g (the number of guesses that their teammates should make).

Her teammates will then try to guess as many red cells as possible, given the hint. They start by making
a first guess, and reveal one of the cells. If the revealed cell is red, they can continue guessing; otherwise,
their turn stops, and the other team starts their turn. A team wins the game if all the cells with their
corresponding color are revealed, or if the other team revealed the assassin cell.

To illustrate this, let’s consider the state of the game below (the one corresponding to the example). The
left picture shows Karen’s view of the board. The middle picture shows her teammates’ view of the board.
Notice that some of the cells are covered for Karen’s teammates, and only Karen knows their true kinds.
The meaning of the right picture will be explained later in the statement.

Originally, Karen’s goal was to tell hints that relate to the names of objects described in some of the red
cells, so that the teammates will know to reveal only those cells. However, she soon realized that the game
is not going great, and that the blue team might beat them in their next turn. Thankfully, she and her
friends have devised a secret “emergency cheating scheme” for these situations specifically.

They start by assigning a letter to each of the 25 cells, in row-major order (as illustrated above, in the
right picture). Then, when Karen announces a word w and a number g, her teammates would do the
following:

12

Southeastern European Regional Programming Contest 2020
May 23, 2021

1. Go through each of the letters wi of the word w in order;

2. If wi is not assigned to any cell or the assigned cell of wi is already revealed, then do nothing;
otherwise, guess the cell corresponding to wi.

The teammates repeat this procedure until they reveal all the correct cells, they make a mistake (reveal
a non-red cell), they already made all g guesses, or all the letters of w are revealed.

In the example above, Karen could announce “actor 2” to her team. Her team would first guess cell (1, 1)
(corresponding to letter a), skip letter c as the cell (1, 3) is already revealed, and then guess cell (4, 5),
winning the game (as the other red cells are already revealed).

Karen wants to use this scheme to win the game in one turn. She knows the dictionary of all the n valid
words, as well as the current state of the game. Find out some hint that she should announce to her team
to grant them the victory!

There are q different scenarios that you need to solve. The dictionary is the same for all scenarios, but
the board configurations might differ.

Input
The first line of the input contains a positive integer n (1 ≤ n ≤ 100 000), the number of valid words.
Each of the following n lines contain a single string of at least one and at most 30 letters, representing
the words in the dictionary.

The following line contains a positive integer q (1 ≤ q ≤ 100 000), the number of scenarios. Then, q lines
follow, each describing a board. Each board is represented by a 5×5 grid of letters from the set {r, b, n, x}
(red/blue/neutral/assassin). If the letter is uppercase, it means that the cell is already revealed (otherwise
the cell is covered). There is at least one blue and one red covered cell, and the assassin cell is always
covered; in other words, the state always indicates a game that has not finished yet.

Output
For each of the q scenarios, output the hint consisting of a word w and a number g (1 ≤ g ≤ 9) which
gives Karen’s team the victory. If no such hint can be announced for the specific scenario, print a single
word “IMPOSSIBLE” (without quotes) instead of the hint. If multiple solutions exist, any one is accepted.
The answers for different scenarios should be printed on separate lines.

Example
standard input standard output

3
actor
cheat
zeta
1
rBBnR
NRnbB
nRRnR
NRxBr
nBRbB

actor 2

Note
Note that Karen couldn’t have announced, for example, cheat 3, as her team would end up revealing the
cell at position (2, 3) and ending their turn. Some other correct solutions would be zeta 2 or actor 4.

13

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem L. Neo-Robin Hood
Time limit: 4 seconds

Memory limit: 256 megabytes

There are n aspiring politicians in Neverland. They are wealthy, but not wealthy enough to gain political
influence. Since Neverland is a financially transparent haven, we know the bank statements of each
politician: the i-th politician (1 ≤ i ≤ n) has mi dollars, and needs pi more dollars to achieve his
political goals.

You are the infamous modern superhero Neo-Robin Hood. You earn your living by stealing from the rich
and wealthy, in order to help... well, whoever promises to help you back. For each of the n politicians you
can chose to do one of the following:

1. Steal his mi dollars;

2. Do nothing to him;

3. Help him gain political influence, by giving him pi dollars.

But your services don’t come for free. Once you help a politician gain political influence, he is bound to
help you cover-up one of your thefts so that you won’t get in trouble – for instance, by providing an alibi.
In turn, you are also bound to not steal his money in the future.

Initially you start with no money. Your task is to rob as many politicians as possible; however, you can’t
afford to get caught, so you need a politician to account for each crime you commit.

What is the maximum number of people you can rob?

Input
The first line of the input contains a positive integer n (1 ≤ n ≤ 100 000), the number of politicians. The
second line of the input contains n positive integers mi (1 ≤ mi ≤ 109, for all 1 ≤ i ≤ n). The third line
of the input contains n positive integers pi (1 ≤ pi ≤ 109, for all 1 ≤ i ≤ n).

Output
Output a single non-negative integer, the maximum number of people that you can steal from.

Note that you do not have to maximize your own wealth, but rather the number of people that you are
stealing from.

Examples
standard input standard output

5
2 3 4 5 6
1 2 3 4 5

2

4
1 2 4 2
5 6 9 7

0

4
9 19 6 5
20 3 16 19

1

14

Southeastern European Regional Programming Contest 2020
May 23, 2021

Problem M. Mistake
Time limit: 3 seconds

Memory limit: 256 megabytes

As an apprentice algorithms enthusiast, it is not a great surprise that Mike struggles to cope with overly
complex systems. Unfortunately, this turned out to be a big problem in the company he is currently
interning.

Mike’s assigned project involves tinkering with the company’s Intelligent Cluster for Parallel Computation.
This is just a fancy name; in reality, the system is just a simple job scheduler, handling a total of n jobs.
Some jobs might depend on successful execution of other jobs before being able to be executed. There are
m such dependencies in total.

It is guaranteed that there are no (direct or indirect) circular dependencies between jobs.

When a run is started, the systems intelligently picks an order to execute these jobs so that all the
dependencies are met (the order may change between different runs). After picking a valid ordering, it
starts executing each of the n jobs in that order. When the system starts executing a job, it prints the id
of the job to a log file.

Unfortunately, today was Mike’s first day interning at the company and he wasn’t very cautious.
Consequently, he accidentally ran the system k times in parallel. The system started erratically launching
jobs and printing to the log file. Now the log file contains n · k ids of all the jobs that were executed.
The job ids from the same run have been printed in the order they were executed, but the outputs from
different runs may appear interweaved arbitrarily.

Your task is to figure out which jobs were executed in each of the k runs from the information inside the
log file.

Input
The first line of the input will contain three integers n, k,m (1 ≤ n, k ≤ 500 000, 0 ≤ m ≤ 250 000,
n · k ≤ 500 000), the number of jobs in the system, the number of runs Mike had triggered, and the
number of dependencies.

The following m lines will contain a pair ai, bi (1 ≤ ai, bi ≤ n, ai 6= bi, for all 1 ≤ i ≤ m) describing a
dependency of kind: “job ai must be executed before job bi”.

Finally, the last line of the input contains n · k integers ci (1 ≤ ci ≤ n, for all 1 ≤ i ≤ n · k), the job ids
that have been printed in the log file, in order.

Output
Output a single line consisting of n·k integers ri (1 ≤ ri ≤ k, for all 1 ≤ i ≤ n·k), the run id corresponding
to each of the jobs in the log file. More specifically, ri should be the run id corresponding to the i-th job,
as it appears in the log file.

If multiple solutions are possible, any one is accepted. It is guaranteed that the input data is valid and
that a solution always exists.

Example
standard input standard output

3 3 2
1 2
1 3
1 1 2 3 3 2 1 2 3

1 2 2 1 2 1 3 3 3

15

